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LARGE-SCALE WIND-TUNNEL INVESTIGATION O F  TRE LOW-SPEED 

AERODYNAMIC CHARACTERISTICS O F  A SUPERSONIC TRANSPORT 

MODEL HAVING VARIABLELSWEEP WINGS* 

By Anthony M. Cook, Richard K. G r e i f ,  and Kiyoshi Aoyagi 
Ames Research Center 

SUMMARY 

The r e s u l t s  a r e  presented as six-component aerodynamic force and moment 
da t a  obtained a t  various angles of a t t a c k  and s i d e s l i p .  
a Reynolds number of 16 mil l ion,  based upon t h e  m e a n  aerodynamic chord of t h e  
wing swept t o  750. 
and aspect r a t i o ,  leading-edge slat  def lec t ion  and geometry, t ra i l ing-edge 
f l a p  def lec t ion ,  geometry, and span ex ten t ,  and ho r i zon ta l - t a i l  geometry. 

D a t a  were obtained a t  

The inves t iga t ion  included va r i a t ions  of wing sweepback 

The r e s u l t s  show t h a t  a l l  configurations t e s t ed ,  except one, were longi- 
The configuration t h a t  w a s  not unstable had tud ina l ly  unstable at  high l i f t .  

a t a i l  i n  a low hor izonta l  posi t ion,  a wing sweepback angle of 23' with a 
l a rge  port ion of the  f ixed wing def lec ted  as a leading-edge f l ap .  

INTRODUCTION 

The development of any supersonic a i r c r a f t  involves combining aerodynami- 
c a l l y  incompatible high- and low-speed design requirements. 
sweep wing concept i s  one approach t o  t h i s  problem. One bas ic  requirement i n  
t h i s  approach i s  t o  provide acceptable s t a b i l i t y  cha rac t e r i s t i c s  by minimizing 
the  aerodynamic center s h i f t  due t o  wing sweep. 

The var iable-  

Ea r l i e r  concepts of variable-sweep wings (ref.  1) incorporated a longi- 
t ud ina l  t r a n s l a t i o n  of t h e  wing together  with change i n  sweep angle t o  e l i m i -  
nate  t he  aerodynamic center  s h i f t  associated with changing sweep. E f fo r t s  t o  
avoid t h e  mechanical d i f f i c u l t i e s  inherent  with longi tudina l  t r ans l a t ion  of 
t he  wing r e su l t ed  i n  t h e  concept of t h e  f ixed  outboard pivot  and a f ixed,  
highly swept, inboard wing sec t ion  designed t o  minimize aerodynamic center  
s h i f t  (refs. 2 through 6 ) .  
i n s t a b i l i t y  cha rac t e r i s t i c s  a t  t h e  stall  f o r  t h e  h i g h - l i f t  configurations of 
t h i s  design. 
longi tudina l  i n s t a b i l i t y  and t h e  maximum l i f t  c h a r a c t e r i s t i c s  of h igh - l i f t ,  
variable-sweep configurations a t  high Reynolds numbers. 

Small-scale results give evidence of longi tudina l  

The purpose of t h e  tests reported herein was t o  inves t iga te  t h i s  

The scope of t h i s  inves t iga t ion  was l imi ted  t o  the  f i r s t -o rde r  e f f e c t s  of 
t h e  var iab les  considered most important: wing sweep i n  low-speed cruise and 
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h igh- l i f t  configurations,  wing aspect r a t i o ,  t ra i l ing-edge f l a p  systems, 
leading-edge slats, ho r i zon ta l - t a i l  a rea  and loca t ion ,  and fixed-wing leading- 
edge radius  and f l a p s .  

NOTATION 
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wing a rea  (see Reduction of Data), sq f t  

b2 aspect r a t i o ,  - A 
aerodynamic center  

wing span, f t  

drag coe f f i c i en t ,  drag 
SA 

l i f t  l i f t  coe f f i c i en t ,  - 
SA 

r o l l i n g  moment rolling-moment coef f ic ien t ,  
qAb 

pi tch ing  moment 
qAE pitching-moment coef f ic ien t  , 

awing moment yawing-moment coef f ic ien t ,  Y 
9Ab 

s ide  force 
SA 

side-force coef f ic ien t ,  

b/2 chord 
n 

mean aerodynamic chord, e J '  c2 dy, f t  

f l ap ,  double s l o t t e d  

fixed-wing leading-edge f l a p  

f lap ,  s ing le  s l o t t e d  

gap of leading-edge slats, f r a c t i o n  of chord 

ho r i zon ta l - t a i l  incidence (pos i t ive  when t r a i l i n g  edge i s  down), deg 

l i f t - d r a g  r a t i o  

leading edge 
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t a i l  length,  measured from wing pivot  axis t o  the  quarter  chord of t h e  
ho r i zon ta l - t a i l  mean aerodynamic chord 

dynamic pressure,  lb / sq  f t  

radius ,  fixed-wing leading edge 

t a i l  volume coe f f i c i en t  

s t r e a m w i s e  d i s tance  along a i r f o i l  chord, f t  

spanwise dis tance perpendicular t o  t h e  plane of symmetry, f t  

perpendicular d i s tance  above the  wing-chord plane, f t  

angle of a t t a c k  of wing-chord plane, deg 

angle of s i d e s l i p  of plane of symmetry, deg 

angle of def lec t ion  of cont ro l  surfaces ,  measured normal. t o  hinge 
l i n e ,  deg 

average e f f ec t ive  downwash, deg 

wing semispan s t a t i o n ,  - 

wing t ape r  r a t i o  

angle of sweepback of fixed-wing leading edge, deg 

angle of  sweepback o f  t a i l  leading edge, deg 

angle of  sweepback o f  movable-wing leading edge, deg 

2Y 
b 

Subscripts 

2 lower surface 

S s la t ,  leading edge 

Tw t o t a l  wing, including both variable-sweep panel and f ixed  wing 

U upper surface 

W wing 

WLE movable-wing leading edge 
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MODEL AND APPARATUS 

Description of Model 

The bas ic  model consis ted of a low-wing, variable-sweep t ranspor t  con- 
f igu ra t ion .  
t o  75' were t e s t e d .  
tunnel  i n  t h e  photograph of f igu re  1: 
with low and high ho r i zon ta l - t a i l  pos i t ions  (configurations 
respect ively) ;  and two low-aspect-ratio configurations,  with high and mid 
ho r i zon ta l - t a i l  pos i t ions  (configurations 

Various wing leading-edge sweepback angles ranging from l 3 - l / Z 0  

two high-aspect-ratio configurations,  
Four configurations a r e  shown i n s t a l l e d  i n  t h e  wind 

A 1  and A2, 

BL and B2) . 
The wing pivot  w a s  loca ted  a t  36-percent semispan and 46-percent chord 

of t h e  f u l l y  swept wing (based upon the  low-aspect-ratio wing of configura- 
t i o n  B ) .  The f ixed  port ion of the  wing w a s  provided with e i t h e r  TO0 or  750 
leading-edge sweep. 

Planform Geometry 

Geometric d e t a i l s  of t he  high-aspect-ratio configuration (A) and the  low- 
aspect-rat io  configuration (B) can be found i n  t a b l e s  I and 11, respect ively.  
A sketch including per t inent  dimensions of t h e  model is  shown i n  f igure  2.  

The a i r f o i l  sec t ion  f o r  t h e  movable wing had a f l a t  lower surface and 
t h e  thickness d i s t r i b u t i o n  of an NACA 6 5 ~ 0 0 6  a i r f o i l  sec t ion .  
f o r  wing a i r f o i l  coordinates.  

See t a b l e  111 

The lower aspect r a t i o  of configuration B was obtained by removing 
3-1/2 f e e t  of wing t i p  from configuration A. 

Fixed-wing sec t ion  geometry i s  d e t a i l e d  i n  f igu re  2 ( c )  by cross  sect ions 
a t  various fuselage s t a t i o n s .  
The basic  leading edge w a s  sharp along i t s  e n t i r e  length .  However, an 
a l t e rna te ,  rounded leading edge shown i n  f igu re  2 ( e )  w a s  a l s o  t e s t ed .  This 
rounded leading edge tapered from a radius  of  3 inches a t  t h e  fuselage junc- 
ture t o  0.73 inch (wing leading-edge radius  a t  movable-wing junc ture) .  

Planform d e t a i l s  a r e  given i n  f igure  2 ( d ) .  

The fuselage consisted of a blended wing-body sec t ion ,  as shown i n  
f igure  2 ( c ) ,  with an underslung, side-by-side engine nace l le  with plugged, 
two-dimensional i n l e t s  f a i r e d  t o  the  rectangular  a f t  fuselage shown i n  
f igure  1. 

Horizontal T a i l  

The hor izonta l  t a i l  w a s  t e s t e d  i n  th ree  pos i t ions  (see f i g .  2 ( b ) ) :  low, 
In t h e  low pos i t ion  it w a s  mounted on the  fuselage a t  10 per- 

C (of 25' sweep) below t h e  wing-chord plane; i n  t h e  mid pos i t ion  it w a s  
mid, and high. 
cent 
mounted on the  v e r t i c a l  s t a b i l i z e r  a t  LO percent C above t h e  wing-chord 
plane; i n  the  high pos i t ion  it w a s  a l s o  mounted on the  v e r t i c a l  s t a b i l i z e r ,  
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- a t  50 percent c above the  wing-chord plane. Because of t he  sweepback of t he  
v e r t i c a l  s t a b i l i z e r ,  ho r i zon ta l - t a i l  length ( 2 ~ )  varied f o r  t he  th ree  posi- 
t i o n s .  Two hor i zon ta l - t a i l  s i z e s  were t e s t e d  i n  the  high pos i t ion .  

For a l l  t e s t s  of configuration Al, t h e  l o w  t a i l  w a s  a t  a negative 
d ihedra l  of 100. 

High-Lift Devices 

Fixed-wing h igh - l i f t  ~~ devices.- Deta i l s  of t h e  p l a in  f l a p  of t h e  f ixed 
wing a r e  shown i n  f igu re  2 ( d ) .  

A simulated f iker type f l a p  was t e s t e d  on t h e  leading edge of t he  f ixed  
wing, with both sharp and rounded fixed-wing leading edge (see f i g .  2 ( e ) ) .  

Movable-wing t ra i l ing-edge double-slotted f l a p  system.- The double- 
s l o t t e d  f l a p  geometry and-a t y p i c a l  -cross sec t ion  are shown i n  f igure  2 ( f ) .  
The vane w a s  7-l/2 percent of t he  wing chord, streamwise, with the  wing a t  
25' sweep. 
2-percent wing chord w a s  maintained a t  t h e  vane. Flap def lec t ions  ranged 
from 30° t o  600 i n  loo increments. 
f l a p  performance. The modification ( f i g .  2 ( f ) )  consis ted of adding sheet 
metal extensions t o  t h e  wing t ra i l ing-edge shroud aqd vane and w a s  used f o r  
a l l  tes ts  of double-slotted f l a p s  unless otherwise noted. 

The main f l a p  comprised 25 percent of  t he  wing chord. A s l o t  of 

The s l o t  geometry w a s  modified t o  improve 

Movable-wing t ra i l ing-edge . ~- . single-s lot ted f l a p  system.- The single- 
s l o t t e d  f l a p  configuration was achieved by removal of t he  vane of t he  double- 
s l o t t e d  f l a p  and moving the  f l a p  forward in to  the  wing. 
wing chord by 4 percent and accounts f o r  t he  difference i n  wing area and 
aspect r a t i o  between t h e  two f l a p  systems. A s l o t  of 2-percent wing chord was  
maintained a t  a l l  f l a p  def lec t ions ,  and the  range of f l a p  def lec t ion  w a s  from 
0' t o  300, bo0, and 50°. The geometry and cross-section d e t a i l s  of t h i s  f l a p  
system a re  given i n  f igu re  2 ( g ) .  

This reduced the  

Both f l a p  systems were constructed i n  three  sec t ions ,  extending (as shown 
i n  f i g .  2 ( a ) )  from 20 t o  52 percent semispan, from 52 t o  67 percent semispan, 
and from 67 t o  98 percent semispan of the  high-aspect-ratio wing. 
r e s u l t ,  f l a p  def lec t ion  notat ion i s  indicated i n  th ree  par t s :  

As  a 

6 = inboard deflection/middle de f l ec t  ion/outboard de f l ec t  ion 

Movable-wing leading-edge slats.- The d e t a i l s  of leading-edge slat s i ze ,  
def lec t ion ,  and posi t ioning are shown i n  f igu re  2 ( h ) .  Two s ized  slats were 
t e s t e d ,  one having a length equal t o  l5-percent streamwise wing chord (at  
25' sweep), and the  o ther ,  18-3/4-percent wing chord. The p r o f i l e  of t he  
0 . 1 5 ~  slat was made t o  match t h e  leading-edge p r o f i l e  of t h e  wing. The 
0.1875~ s la t  incorporates t he  bas i c  0 . 1 5 ~  slat with a rounded leading-edge 
extension t o  provide camber as shown i n  t h e  f igure .  S l a t  def lec t ion ,  6s1 is  
given r e l a t i v e  t o  i t s  undeflected pos i t ion  as i f  it w e r e  "gloved" onto t h e  
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wing. Slat gap, gs, was varied from 0- to 2-percent chord in 1/2-percent 
increments. Unless otherwise noted, all slat data reflect the use of the 
basic slat of 0.15~ length. 

TESTING AND PROCEDURE 

Six-component force and moment data were obtained by conventional wind- 
tunnel testing methods through an angle-of-attack range from -4' to +22O, and 
an angle of sideslip from -2' to A0. 
15 pounds per square foot, corresponding to a Reynolds number of 16 million, 
based upon mean aerodynamic chord at 75O wing sweep. 

Free-stream dynamic pressure was 

The majority of tests were directed toward the development of high-lift 
devices and the investigation of longitudinal stability characteristics for 
landing and take-off configurations. 

REDUCTION OF DATA 

Corrections 

Standard corrections were applied to angle of attack to account for wind- 
tunnel wall effects. The corrections accounted for the variations in span due 
to wing sweep. Measured drag was corrected in accordance with the angle-of- 
attack correction. 
measurements to account for strut tares: 

In addition, the following correction was added to drag 

No correction was mde for tunnel-wall corrections for tail-on conditions 
due to the variable-sweep nature of the configuration. 

Reference Dimensions 

The computation of force and moment coefficients for all wing sweeps of 
a given configuration was based on the dimensions corresponding to the total 
wing area, including fixed wing, at the 75O sweep condition of that particular 
configuration . 

Moment Center 

The moment center for all configurations, regardless of wing sweep, was 
taken on the axis of the wing pivot, 2.875 inches above the wing-chord plane. 



RESULTS 

The acquis i t ion  of  da t a  f o r  t h i s  inves t iga t ion  covered four t e s t i n g  
periods and the severa l  configurat ions previously mentioned. The r e s u l t s  i n  
f igures  3 through 48 present  longi tudina l  cha rac t e r i s t i c s  and se lec ted  cases 
include l a t e ra l -d i r ec t iona l  cha rac t e r i s t i c s .  These results are swmnarized i n  
f igures  49 through 56 and are discussed more completely in  t h e  Discussion 
sect ion of t h i s  r epor t .  Table IV i s  a complete index t o  the  f igu res .  

DISCUSS ION 

General Charac te r i s t ics  

Aspect r a t io . -  Figure 49 presents  a comparison of t h e  t e s t  da ta  f o r  wings 
of aspect r a t i o  6.9 and 8.4 at  2 5 O  of wing leading-edge sweepback and with 
h igh - l i f t  devices i n s t a l l e d .  A t  1 2 O  angle of a t t ack ,  f o r  instance,  there  i s  
an incremental l o s s  of 6.5 percent CL i n  reducing aspect r a t i o  from 8.4 t o  
6.9, accompanied by a decrease i n  s t a b i l i t y  of >-percent s t a t i c  margin. The 
reduction i n  aspect r a t i o  causes a lower l i f t - cu rve  slope,  bu t  it i s  shown 
t h a t  f o r  t h i s  degree of wing sweepback, t he re  is  e s s e n t i a l l y  no difference i n  
C h X  * 

Wing sweep.- Figure 50 shows t h e  e f f e c t s  of 1 3 - 1 / 2 O  and 25O wing sweep 
f o r  both the  flaps-up and flaps-down conditions.  
def lec t ion ,  it i s  seen t h a t  t he re  i s  no appreciable bene f i t  t o  be derived by 
a wing sweepback angle of l e s s  than 2 5 O ,  i n  terms of a "usable" 
t h a t  CL a t  which pitch-up occurs. Changes i n  l i f t  due t o  wing sweep f o r  t he  
flaps-up condition a re  a l s o  very small. Note t h a t  t h e  aerodynamic-center 
s h i f t  due t o  wing sweep from l3-l/z0 t o  25' with f l a p s  up amounts t o  8-percent 
s t a t i c  margin and i s  e s s e n t i a l l y  the  same as t h e  change i n  s t a t i c  margin du.e 
t o  40° of f l a p  def lec t ion  a t  l 3 - l / Z 0  of wing sweep. (The s t a t i c  margin change 
d.x t G  flap; def lec t ion ,  however, i s  a result of the  downwash flow a t  the  
pa r t i cu la r  ho r i zon ta l - t a i l  l oca t ion ,  since no change i s  indicated i n  t h e  t a i l -  
off  d-a.t.a of f i g s .  36 m d  37. ) 

In t he  case of 400 f l a p  

C b x ,  o r  

Longitudinal S t a b i l i t y  

A s  mentioned i n  the  Introduction, variable-sweep configurations general ly  
haTvre unstable pitching-moment c h a r a c t e r i s t i c s  a t  high l i f t  coe f f i c i en t s .  The 
reason i s  t h a t  a wing-tip s t a l l  progressing inboard (based on t u f t  observa- 
t i o n s )  i s  fu r the r  a.ggra.w,ted by  a vortex generated along t h e  highly swept 
leading edge O f  t'ne f ixed wing delaying i d ~ o a r d  stall.  The s i ze  and sweep of 
the fixed-wing port ion contr ibute  t o  t h e  s t rength  of t h i s  vortex.  Par t  of 
this i m ~ e s t i g a t i o n  involve3 t e s t i n g  ho r i zcz t z l  -tzil psc i t ionc  i n  cozi'aination 
w i ~ h  b a i i o u s  C l u w  conLro1 Gevices i n  v r & r  t o  alievia-ce t h i s  problem. ... I 
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Effect of f ixed wing.- Figure 24 shows t h a t  reducing fixed-wing leading- 
edge sweepback from 75O t o  70' increases  longi tudina l  s t a b i l i t y  approximately 
7 percent and correspondingly increases  maximum l i f t  coef f ic ien t  by 7 percent.  

Effect  of hor izonta l  t a i l . -  Figure 31 summarizes t h e  e f f e c t s  of 
ho r i zon ta l - t a i l  l oca t ion  and s i z e  on p i tch ing  moment. 
t h a t  gave reasonably l i n e a r  pi tching moment up t o  high l i f t  coe f f i c i en t s  was  
t h e  low posi t ion,  loca ted  10 percent of t h e  23' sweep 
plane.  Placing t h e  t a i l  a t  a high pos i t ion  (50 percent E above the  wing- 
chord plane) caused a severe pitch-up a t  l i f t  coe f f i c i en t s  of 1 .4 .  
midway between t h e  high and low pos i t ions  w a s  somewhat b e t t e r  than t h e  high 
t a i l  posi t ion,  bu t  t h e  longi tudina l  c h a r a c t e r i s t i c s  were s t i l l  unsat isfactory.  

The only t a i l  pos i t ion  

C below t h e  wing-chord 

The t a i l  

Figure 52 presents  t h e  cont ro l  e f fec t iveness  (aC&iT) ,  f o r  two of t he  
ho r i zon ta l - t a i l  configurations j u s t  discussed, and e f f ec t ive  downwash angle 
(Eav) and  t a i l  angle of a t t ack  (CLT ) f o r  t he  t a i l  i n  t h e  high pos i t ion .  
These curves were obtained f rom cross p l o t s  of pi tching moment versus angle 
of a t t ack  f o r  various values of t a i l  incidence. It i s  shown t h a t ,  f o r  both 
t a i l  posi t ions,  t h e  
12' angle of a t t ack ,  ind ica t ing  no change i n  t a i l  e f f ic iency  f ac to r .  
above 12' angle of a t t a c k  f o r  t h e  high t a i l ,  t h e  changing downwash f i e l d  
causes the  t a i l  angle of a t t ack  (q) t o  f a l l  back t o  zero a t  16O wing angle 
of a t t a c k  so t h a t  t h e  s t a b i l i t y  contr ibut ion of t h e  t a i l  i s  l o s t .  This e f f e c t  
is  pr imari ly  due t o  t h e  vortex generated by t h e  fixed-wing leading edge. A t  
t h e  same time, above 12' wing angle of a t tack ,  t he re  is  a reduction i n  control  
power (aC&iT) f o r  t h e  high t a i l ,  ind ica t ing  a reduction i n  dynamic pressure 
a t  t h e  hor izonta l  t a i l .  On t h e  other  hand, t h e  low t a i l  is  not adversely 
a f fec ted  by the  wing downwash f i e l d  (as i l l u s t r a t e d  by increasing 
above 12' angle of a t t ack .  

aC&i, curve has v i r t u a l l y  no change i n  slope up t o  
However, 

dC,&iT) 

Flow-control devices.- Reduced fixed-wing sweepback and c e r t a i n  flow- 
cont ro l  devices on t h e  fixed-wing leading edge were e f f ec t ive  i n  a l l ev ia t ing  
the  reduction of longi tudina l  s t a b i l i t y  a t  high angles of a t t ack .  Figure 33 
shows the  e f f e c t s  of these cont ro l  devices on pi tching moment. With the  t a i l  
i n  t h e  low pos i t ion ,  def lec t ing  a l a rge  por t ion  of t h e  f ixed  wing about a 
hinge l i n e  along t h e  fuselage juncture (similar t o  a p l a in  leading-edge f l a p )  
e s s e n t i a l l y  eliminated t h e  unstable p i tch ing  moment break a t  the  s ta l l .  
e e r  f l a p  used with a l a rge  leading-edge radius  (see f i g .  2 ( e ) )  improved t h e  
s t a b i l i t y  a t  t h e  s t a l l  but,  as shown i n  f igu re  53, not  s u f f i c i e n t l y  t o  over- 
come t h e  l a rge  des t ab i l i z ing  moment contr ibut ion of t h e  hor izonta l  t a i l  i n  the  
high pos i t ion .  

A 

The improvements i n  s t a b i l i t y  r e su l t i ng  from t h e  use of these control  
devices confirm t h a t  t h e  s t a b i l i t y  problems a r e  associated with t h e  vortex 
shed f r o m t h e  fixed-wing leading edge. These devices delay formation of t h i s  
vortex and thus tend t o  a l l e v i a t e  t h e  i n s t a b i l i t y .  

Maximum L i f t  

Trailing-edge f laps . -  Figure 54 summarizes t h e  e f f e c t s  of both single- 
The full-span double-slotted f l a p  s l o t t e d  and double-slotted f l a p  systems. 
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had a 0.3 grea te r  l i f t  increment a t  zero angle of a t t ack .  For both full-span 
f l a p s  
C h x  With 
part-span de f l ec t ion  (outboard f l a p  undeflected) t h e  400 single-s lot ted f l a p  
achieved higher than the  300 double-slotted f l a p  p a r t l y  because of a 
higher l i f t - cu rve  slope.  Tuft  observations indicated t h a t  double-slotted 
f l a p  effect iveness  w a s  reduced a t  higher angles of a t t ack  by the  fixed-wing 
vortex e f f e c t .  

C b x  
a t  l 5 O  angle of a t tack ,  3O e a r l i e r  than the  s ing le-s lo t ted  f l a p .  

w a s  e s s e n t i a l l y  t h e  same, with the  d o a l e - s l o t t e d  f l a p  achieving 

C h x  

Figure 35 shows the  e f f e c t s  of t h e  amount of flap-span def lected.  
Deflection of t he  outboard f l a p  sec t ions  produced an increase i n  lift through 
near ly  the  e n t i r e  range of l i f t  coe f f i c i en t s ,  including C h x .  However, t he  
addi t iona l  nose-down moment produced by the  outboard f l a p s  r e su l t ed  i n  a t r i m  
requirement which, f o r  a l l  p r a c t i c a l  purposes, cancelled the  advantage i n  
maximum l i f t  coe f f i c i en t .  

Leading-edge slats.- A l imi ted  program t o  optimize wing leading-edge s la t  
def lec t ion  and gap s i ze  was conducted with t h e  low-tai l ,  high-aspect-ratio 
configuration (A=). Figure 56 presents  a summary of t he  r e s u l t s  a t  a wing 
sweepback of 13-1/2' with 30° ful l -span double-slotted f l a p s .  
these slat  var iab les  on maximum l i f t  coef f ic ien t  a r e  shown and were used t o  
t a i l o r  the  slat geometry f o r  subsequent t e s t ing .  

The e f f e c t s  of 

Lateral-Direct ional  S t a b i l i t y  

No unusual l a t e r a l  or d i r e c t i o n a l  s t a b i l i t y  cha rac t e r i s t i c s  were evident 
i n  any of the  configurations t e s t e d  (see f i g s .  10, 13, 36, and 41). 
had d i r ec t iona l  s t a b i l i t y  and pos i t ive  e f f ec t ive  d ihedra l  up t o  t h e  s ta l l  
angle of a t t ack .  

The model 

SUMMARY OF RESULTS 

1. The r e s u l t s  show t h a t  a l l  configurations t e s t ed ,  except one, w e r e  
longi tudina l ly  unstable a t  high l i f t .  The one configuration t h a t  e s s e n t i a l l y  
eliminated t h i s  i n s t a b i l i t y  a t  s ta l l  consis ted of a drooped fixed-wing 
leading-edge with the  high-aspect-ratio wing a t  25' of w i n g  sweepback, i n  
conjunction with the  low hor i zon ta l - t a i l  pos i t ion .  

2 .  No so lu t ion  t o  longi tudina l  i n s t a b i l i t y  was achieved with t h e  hori-  
zontal  t a i l  i n  any o ther  than t h e  low pos i t ion  (10 percent of t h e  25' sweep 
c 
- 

below the  wing chord p lane) .  

9 



3. Results ind ica te  t h a t ,  f o r  t he  low-speed configuration, reducing wing 
sweepback below 23’ yielded no appreciable bene f i t  i n  terms of a usable 
maximum lift coe f f i c i en t  (or t h a t  CL a t  which longi tudina l  i n s t a b i l i t y  
occurs) .  
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I 

- - 

Movable wing 

I 

TABLE I.- MODEL GEOMETRY OF CONFIGURATION A 

- -  
Total wing 

Wing: 

AR A A~;E Area 

8.7 0.343 70' 491 

8.0 ,337 70° 483 
7 5 O  540 

1.5 .343 700 462 
1 .4  .470 75' 510 

NACA 65~006 modified airfoil; 00 twist, incidence, and dihedral 

AR E 

6.6 12.75 

6 .1  12.80 
6.0 15.80 

1.5 19.44 
1 .4  22.47 

Total area 
Exposed area 

I 

High- 

- 
ALE Span Area AR C ZT - 
60° 19.4 169 2.2 10.0 15.8 
60° 19.4 110 3.4 8.0 20.1 

13-1/2O 
250 
5 5 O  
75O 

Large tail 60° 15.0 ll1 2.0 

Span I Area 1 

26.6 1 462 1 
26.6 510 
-aspect-ratio 

56.7 369 

54.3 367 

8.0 27.9 

geometry, single-slotted flaps I 
56.7 
54.3 

26.6 
40.2 4.3 .344 454 3.6 14.51 

486 1 . 5  .471 437 1.6 19.83 

I Low horizontal tail (A=) I 

I High horizontal tail (A2) I 

11 



I l l  I Ill11 I 

I 
Low-aspect-ratio geometry, 

&E Span Area AR A - 
13-1/2O 49.6 325 7.6 0.432 
180 48.5 325 7.2 .429 
2 5 O  47.4 324 6.9 .423 
32' 43.0 327 5.7 .430 
55' 34.9 352 3.5 -4.53 
75O 24.7 460 1 .3  .590 - 

TABLE 11.- MODEL GEDMETRY O F  CONFIGURATION B 

Wing: NACA 65~006 modified a i r f o i l ;  Oo t w i s t ,  incidence, and d ihedra l  

AU 

Total a r ea  60° 

Total  wing 
I 

Movable wing I 

span j Area j AR 
-. 

15 .O I 111 -1 2 .O 

I 
Am& L 

_. - 
C 

8 .o 

8 .o 

_ , I ,  I I I I I I ..,I. I, 111111 I1 1 1 1  111111. 1111 I 
I 

I I  



TABU 111.- WING AIRFOIL ORDINATES (MOVABU SECTION); MODIFIED NACA 65~006; 
Oo TWIST, INCIDEI!TCE, AND DIHEDRAL 

Streamwise section, A w L ~  =25O Z 

+X i 

0 
* 0073 
.0086 
.0130 
.0260 
.O?OO 
.0780 
.loo0 
.1500 
.2000 
.2500 
.3000 
* 3500 
.4000 
.4>00 
.5000 

.6000 

.6500 

.7000 
* 7500 
.8000 
.8500 
.go00 
- 9500 

1 .oooo 

- 5500 

0.00727 
.01498 

.016 72 

.02667 
*0333-5 
-03729 
.04479 
,05032 
.05500 

.06083 

.06219 

.06240 

.06167 

.05969 

.05625 

.05208 

-01533 

.02044 

.05844 

.04688 

.04104 

.03458 

.02750 

.02052 

.00604 
-01333 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

.00604 

.00604 

.00604 

.00604 

.00604 
,00604 



TABLE IV.- INDEX TO FIGURFlS 

Clean configuration 
Clean configuration 
Clean configuration 

Clean configuration 

~~ ~ 

Configuration Al: high-aspect-ratio wing, low horizontal  t a i l  

13-1/2 25 7[ O / r  FiS 2 
55 5 

I 75 6 

1 

Single-slotted trailing-edge flaps:  
Part-span def lect ion 
Full-span def lect ion 
Part-span def lect ion 
Part-span def lect ion 
Full-span def lect ion 

I Full-span def lect ion 

FSS 
FSS 
FSS 

I 

Fixed-wing leading-edge f l a p  def lect ion 25 

Fixed-wing leading-edge radius and' f l a p  def lect  ion 25 
25 iHorizonta1-tail s ize  

70 40/40/0 FSS 28 
70 40/40/0 FSS 29 

7 1  8 
9 
10 
11 i 
12 
13 
14 
15 
16 
17 
18 
19 

I 

20 
21 
22 
23 
24 
25 
26 
27 



TABLE IV.- LNDM TO FIGURES - Concluded 

I I Configuration B1: low-aspect-ratio wing, high horizontal t a i l  

Clean configuration 
Clean configuration 
Clean configuration 
High-lift configurations 
High-lift configurations 
High-lift configurations 
High-lift configurations 
Fixed-wing radius and Kr&er f l ap  
Fixed-wing radius and KrGger f l ap  
Fixed-wing radius and KrGger f lap  
Fixed-wing radius and KrCger f l ap  
Fixed-wing radius and KrGger f l ap  
Fixed-wing radius and Kr%er f l ap  

I 
~~~ 

I/ Effect of: 

r L  ul 

45 
47 
48 

Fixed-wing K r k e r  f l ap  deflection 25 70 

1 I Fixed-wing K r k e r  f l ap  deflection 
'Fixed-wing K r k e r  f l ap  deflection 

Summary plo ts  
Aspect r a t io ,  t a i l  off 25 40/40/0 FSS 7 
Wing sweep, t a i l  on 
Horizontal-tail location 
Hor izontal-t a i l  e f fec t  ivene s s 

Single-slotted and double-slotted f laps  variable FSS and FDS 54 

variable FSS 50 

Fixed-wing leading-edge radius and f l ap  deflection variable FSS 53 

Amount of f lap  span deflected variable FSS 55 
eading-edge slat  geometry 13-1/2 75 50/50/50 FDs 56 

13-1,25 71 40/40/0 40/40/0 FSS FSS 51 52 

ding sweep 

18 
25 
32 
55 
75 
18 
25 
25 
32 
18 
18 
25 

18 
25 

1 

I Trailing-edge f laps  sweepback 

O l l  'i' 
40/40/0 FSS 
40/40/0 FSS 
50/50/0 FSS 
40/40/0 FSS 
40/40/0 FSS 
4O/4O/4O FSS 
40/40/0 FSS 
40/40/0 FSS 
40/40/4O FSS 
40/40/0 FSS 
40/40/0 FSS 

I I Configuration B2: low-aspect-rat i o  wing, mid horizontal t a i l  

Figure 
number 

30 1' 
31 
32 
33 
34 
35 
36 
37 
38 1 
39 
40 

I 
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A-30876 (a) Configuration Al: low tail, aspect-ratio-8.4 wing. 

Figure 1.- Photographs of the model mounted in the Ames 40- by 80-foot wind tunnel. 



U 

(b) Configuration A2: high t a i l ,  aspect-ratio-8.4 wing. 

Figure 1. - Continued . 

A-31298 



(c) Configuration B1: high t a i l ,  aspect-rat  io-6.9 wing. 

Figure 1. - Continued . 

A-31299 



Iu 
0 



Moment center 

low AR configuration) 

Wing reference chord plane (wing lower surface) 
I 

------ --- 

65.30 
AI I dimensions in feet 

(a)  General d e t a i l s  of configuration A l .  

Figure 2.- Geometric d e t a i l s  of the  model. 



Tail pivot a x i d  

Low tail position 

2.924 k 

-28.67 

Hiah tail position 

\Pivot axis / 

Mid tail position 

A T  e.75  

WCP- -+ - - - -  

(b )  Details of hor izonta l - ta i l  locat ions.  

Figure 2 .- Continued . 



Sta. 592.7- - - - . -  Ref. line 

Symmetrical about 
E. 

-7 Wing mounting platform 

77---- Sta. 523.2- - 
(Wing plvotl 

4.25 
I 
I 

wing 
16.5 

Fixed 

I 

-82.25--  -I 

Sta. 438.8- - - + 

Sta. 391.0- 

L.E. 

-- 

I 

( c )  Cross-section d e t a i l s  of f ixed  wing. 

Figure 2 .  - Continued . 
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I 
75"A flap-, f I  

I 

70" A f lap  Section A-A 
(Showing hinge line on fuselage) 

(a) Details of f ixed-wing leading-edge plain flap. 
Figure 2. - Continued . 



-7 E?- -+- 
) 

L.E. slat w 

Tapers from 3" radius at  
fuselage to .75" (wing L.E. 
radius at movable-wing 
juncture.) 

Sharp flap leading edge 
with Krliger flap 

Large L.E. radius 
on fixed-wing L.E. flap 

Large L.E. radius 8 Kruger flap 
on fixed-wing flap L.E. 

Section A-A 

(e )  Details of fixed-wing leading-edge radius and KrGer f lap .  

Figure 2 .  - Continued . 



Flap section taken perpendicular 
to .772c, with AWLE =25" 

Deflected 30" 

Coordinates of double-slotted flap along streamwise direction, with h w ~ ~ = 2 5 "  

(f) Details of the double-slotted flap. 

Figure 2. - Continued . 



Gap dimensions same for all flap deflections 

--- -- --\ 

--\ 

-- LCUndef lected 

L_----- _ _ _ _ _ _ _ _ - - - _ -  =>. 

Coordinates of single-slotted flap along 
streamwise direction with hWLE=25O 

.040 ,0592 1 
1 ,080 1 ,0748 .( 
I .I20 I .0860 I 

I .200 I ,0994 I 
.IO23 
.IO16 

1 .320 .0968 I .400 I .0856 I 

Flap section I to . 7 3 ~  for Aw~~=25' 

\\ r D e f  lected 40° 

~~ - 

(g) Details of the single-slotted flap. 

Figure 2 .- Continued . 



For gap (gs) = 0.020~ 

8s = IO". 20".30"; Slat T.E. was positioned 

to b e l t o  a wing L.E. radius line as shown 

Ss = 25", 35"; Slat was rotated with T.E. 

in same position as for 6 ~ = 3 0 "  

For all other gaps (gs): 

Slat was translated along 
a vertical to the wing 
chord plane. 

Details of leading-edge slat deflections, .15c slat 

\ 
Standard 35" 8, 

Slat translated af t  8 down 
to seol gap (fig. 23 (a) only) 

@ Slat translated vertically from 
33- sealed-gap position to gap=.005c 

(fig. 23 (b) only) 

Details of leading-edge slat positioning for sealed gap & , 0 0 5 ~  gap 4 '/ 

Contoured to wing 

Details of .1875c slat 

(h) Detai ls  of movable-wing leading-edge slats.  

Figure 2.  - Concluded. 
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-16 .I2 .08 .04 0 704 708 -.I2 
Cm 

(a) Longitudinal characteristics with flaps up; slats on and o f f .  

Figure 3 .- Characteristics of cruise configuration at 13-1/2O sweep. 
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-0 -4 0 4 8 12 16 20 24 

a 

Longitudinal characteristics including cruise lift-drag 

Figure j . - Concluded. 
rat io. 



2.0 

I .8 

I .6 

I .4 

1.2 

I .o 

CL .8 

.6 

. 4  

. 2  

0 

-. 2 

-. 4 

0 -10"Off Off  

0 .04 .08 .I2 .I6 .20 .24 .28 .32 .36 .40 .44 .48 .52 .56 .60 .64 .68 
.I6 .I2 .08 .04 0 -.04 -.08 -.I2 

CD cm 

(a )  Longitudinal character is t ics  with f laps  up; slats on and o f f .  

Figure 4 .- Characterist ics of cruise configuration a t  25' sweep. 



I 

a 

(b) Longitudinal characteristics including cruise lift-drag ratio. 

Figure 4. - Concluded. 
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I .6 

I .4 

I .2 

I .o 

.8 

CL .6 

.4 

.2 

0 

-. 2 

-.4 

0 .04 .08 .I2 . I6 .20 .24 .28 .32 .36 .40 .44 .48 .52 56 .60 .64 
.28 .24 .20 .I6 .I2 .08 .04 0 -.04 -.08 -.I2 -.I6 
CD Cm 

(a) Longitudinal characteristics with flaps up; slats on and off. 

Figure 5 .- Characteristics of cruise configuration at 3.5' sweep. 
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." 
-8 -4 0 4 8 12 16 20 24 

U 

(b) Longitudinal characteristics including cruise lift-drag ratio. 

Figure 5.- Concluded. 
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I 

I 

I 

CL 

0 .04 .08 .I2 .I6 .20 .24 .28 .32 .36 .40 .44 .48 

CD Crn 

.20 .I6 .I2 .08 .04 0 -.04 -.08 -.I2 -.I6 -.20 

(a) Longitudinal characteristics with flaps up; slats off. 

Figure 6 .- Characteristics of cruise configuration at 75' sweep. 
W ul 



L / D  

i T  
0 0" 
0 -2 1/2" 
0 -7 1/2" 
A -10" 

-15" 

CONFIG: A i  

AWLE: 75" 
A F L E :  70" 

rFLE: Sharp 

~ F L E :  0" 

6s: Of f  
&DS: o/o/o 

FLE: Plain 

0 4 0 12 16 20 24 
a 

(b) Longitudinal characteristics including cruise lift-drag ratio. 

Figure 6.- Concluded. 
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2.0 

I .8 

I .6 

I .4 

I .2 

I .o 
CL 

-4 0 4  8 12 16 20 24 

0 

0 .I .2 .3 .4 .5 .6 .7 .8 
.2 . I  0 -.I 

CD Cm 

Figure 7 .- Longitudinal characteristics of 300 partial-span single-slotted flaps at 13-1/20 sweep. 
I w 
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- 4  0 4 8 12 16 20 24 .3 .2 .I 0 -.I 
0 . I  .2 . 3  .4 .5 .6 .7 .8 

U CD cm 

(a) Longitudinal characteristics with tail incidence. 

Figure 8.- Characteristics of 40' partial-span single-slotted flaps at 13-1/2' sweep. 
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(b) Longitudinal characteristics at constant sideslip. 

0 -.I .2 .I 
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Figure 8. - Continued . 
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.6 

.4 
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CY Cn c2 

(e) Lateral characteristics at constant s ides l ip .  

Figure 8. - Continued . 
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(d) Lateral characteristics at constant angle of attack. 

Figure 8.- Concluded. 
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I .6 

I .4 
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Figure 9 .- Characteristics of 40° full-span single-slotted flaps at 13-1/2' sweep. 



2.0 

I .8 

I .6 

I .4 

1.2 

cL 1.0 

.8 

.6 

.4 

.2 

0 
-4 0 4 8 12 16 20 24 

0 

.2 .I 0 -.I -.2 
0 .I .2 .3 .4 .5 .6 .7 

CD Cm 

(a) Longitudinal characteristics with tail incidence. 
0 

Figure 10.- Characteristics of 30' partial-span single-slotted flaps at 25 sweep. 
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(b) Longitudinal characteristics at constant sideslip. 

Figure 10. - Continued . 
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(e) Lateral characteristics at constant sideslip. 

Figure 10. - Continued . 
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Q GFSS 
0 9.1" 30/30/0 
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CONFIG: A i  

AWLE: 25O 
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rFLE: Sharp 
~ F L E :  0" 
FLE: Plain 

8s: 35" 
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(d) Lateral characteristics at constant angle of attack. 

Figure 10. - Concluded. 
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Figure 11 .- Characteristics of 40° partial-span single-slotted flaps at 25' sweep. 
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Figure 12 .- Characteristics of 30' full-span single-slotted flaps at 25' sweep. 
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(a) Longitudinal characteristics with tail incidence. 

Figure 13. - Characteristics of 40° full-span single-slotted flaps at 25' sweep. 
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(b) Longitudinal characteristics at constant sideslip. 

Figure 13. - Continued . 
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(e) Lateral characteristics at constant sideslip. 

Figure 13.  - Continued . 



.06 

.04 

.02 

CY 
0 

-.02 

-.04 a 
0 .7O 

.04 

-0 2 

Cn 0 

-.02 

-.04 

0 5.0' 
0 9.3O 

CONFIG: A i  

AWLE: 25O 
AFLE: 70" 
rF LE: Sharp 

FLE: Plain 
~ F L E :  0" 

8s: 35O 
9s: .005 c 

i,: - 1 5 O  

8 FSS: 40/40/40 

- 1 -  - -  
.04 

.o 2 

c1 O 

-.02 

- na ." I 

-8 -6 -4 -2 0 2 4 6 
P 

(a) Lateral characteristics at constant angle of attack. 

Figure 13. - Concluded. 
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Figure 14.- Effect of double-slotted f l ap  deflection a t  13-1/2' sweep. 
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Figure 13 .- Characteristics of 300 full-span double-slotted flaps at 13-1/2O sweep. 
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Figure 16.- Characteristics of 30' partial-span double-slotted flaps at 25' sweep. 
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(a) Longitudinal characteristics with tail incidence. 

Figure 17 .- Characteristics of 50' partial-span double-slotted flaps at 2 5 O  sweep. 
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(b) Longitudinal characteristics at constant sideslip. 

Figure 17. - Continued . 
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Figure 17. - Continued . 
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(d) Lateral characteristics at constant angle of attack. 

Figure 17.- Concluded. 
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Figure 18 .- Characteristics of 300 full-span double-slotted flaps at 2 3 O  sweep. 
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Figure 19.- Characteristics of 40° full-span double-slotted flaps at 25' sweep. 
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(a) Longitudinal characteristics with tail on. 

Figure 20 .- Characteristics of 30' full-span double-slotted flaps at 2 3 O  sweep. 
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(b) Longitudinal characteristics at constant sideslip; tail on. 

Figure 20. - Continued . 
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(e) Longitudinal characteristics at constant sideslip; tail off. 

Figure 20.- Continued. 
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(f) Lateral characteristics at constant sideslip; tail off. 

Figure 20. - Continued . 
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Figure 21.- Characteristics of 30° full-span double-slotted flaps at 13-1/2’ sweep and 7 5 O  f ixed-wing 
sweep. 
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Figure 21. - Continued . 
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(e) Lateral characteristics at constant sideslip. 

Figure 21 .- Continued. 
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(d) Lateral characteristics at constant angle of attack. 

Figure 21. - Concluded. 
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(a) Longitudinal characteristics for various slat positions. 

Figure 22.- Leading-edge slat effects at 13-1/2' sweep with double-slotted flaps at 50' full-span. 
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(b) Longitudinal characteristics for various slat gaps at constant def lec t ion .  

Figure 22. - Continued . 



-4 0 4 8 12 16 20 .2 .3 .4 .5 .6 .7 0 . I  .I 0 -.I 72 
Q CD Cm 

( c )  Longitudinal character is t ics  f o r  various slat posit ions.  

Figure 22. - Concluded. 
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(a) Effect of slat geometry with 40' full-span flaps.  

Figure 23.- Leading-edge slat effects at 2 5 O  sweep with single-slotted flaps. 
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(b) Effect of slat geometry a l te ra t ions  with 40' full-span f laps .  

Figure 23.  - Continued. 
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(c) Effect of slat deflections w i t h  30' partial-span flaps. 

Figure 23.- Concluded. 
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Figure 24.- Effect of fixed-wing leading-edge sweep with movable wing at l 3 - l / 2 O  sweep. 



03 
0 

2.0 

I .8 

I .6 

I .4 

I .2 

c, 1.0 

.8 

.6 

.4 

.2 

0 
-4 0 4 8 12 16 20 0 . I  .2 .3 .4 .5 .6 .7 . I  0 -.I -.2 

Figure 25.  - Effect of f ixed-wing leading-edge radius,  with movable wing a t  13-1/2' sweep, unmodified 
f l a p  s l o t .  



2.2 

2.0 

I .8 

I .6 

I .4 

I .2 

CL 

I .o 

-4 0 4 8 12 16 20 
a 

0 .I .2 .3 4 .5 .6 .7 
CD 

.I 0 -.I -.2 
Cm 

Figure 26 .- Elfeet of f ixed-wing leading-edge f lap  deflection, with 50' double-slotted trailing-edge 
f laps ,  13-1/2' wing sweep. 
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Figure 27.- Effect of fixed-wing leading-edge p la in  f l ap  def lect ion,  a t  2 3 O  wing sweep and TO0 fixed- 
wing sweep. 
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Figure 28.- Effect of fixed-wing leading-edge radius and Krker  flap, 40’ partial-span flaps, 2>’ wing 
sweep. 
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(a) Small horizontal tail. 

Figure 2.9.- Effect of horizontal-tail size on longitudinal characteristics at 2 5 O  wing sweep, 400 
partial-span single-slotted flaps. 
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Figure 29 .- Concluded. 
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Figure 30.- Longitudinal characteristics, low-aspect-ratio wing, 18O wing sweep, flaps up, slats off. 
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Figure 21 .- Longitudinal characteristics, low-aspect-ratio wing, 2 5 O  wing sweep, flaps up, slats off. 
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Figure 32 .- Longitudinal characteristics, low-aspect-ratio wing, 32' wing sweep, flaps up, slats off. 
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Figure 33 .- Longitudinal characteristics, low-aspect-ratio wing, 55' wing sweep, flaps up, slats off. 
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Figure 34 .- Longitudinal characteristics, low-aspect-ratio wing, 7 5 O  wing sweep, flaps up, slats o f f .  
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Figure j5  .- Effect of 40' partial-span single-slotted flaps on low-aspect-ratio wing at 18' sweep. 
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(a) Longitudinal chayacteristics with tail incidence. 

Figure 36 .- Characteristics of low-aspect-ratio wing at 25' sweep, 40' partial-span flaps, horizontal 
and vertical tail on and off. 
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(b) Longitudinal characteristics at constant sideslip; tail on. 

Figure 36. - Continued. 
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Figure 36. - Continued . 
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(d) Lateral characteristics at constant sideslip; t a i l  on. 

Figure 36.- Continued. 
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Figure 36. - Continued. 
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(f) Lateral characteristics at constant angle of attack. 

Figure 36.- Concluded. 
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Figure 37.- Longitudinal characteristics, low-aspect-ratio wing at 23' sweep, 50' partial-span flaps. 
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Figure 38. - Longitudinal characteristics, low-aspect-ratio wing, 32' sweep, 40' partial-span flaps. 
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Figure 39 .- Longitudinal charac te r i s t ics ,  low-aspect-ratio wing, 18O sweep, with la rge  f ixed-wing 
leading-edge radius and Krker-type f l ap .  



Figure 40 .- Longitudinal character is t ics  , low-aspect-ratio wing a t  18' sweep, 40° full-span f laps  , 
large f ixed-wing leading-edge radius and Krker-type f lap .  
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(a) Longitudinal characteristics with tail incidence. 

Figure 41 .- Characteristics of low-aspect-ratio wing at 25' sweep, with large fixed-wing leading-edge 
radius and Krker-type flap. 
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(b) Longitudinal character is t ics  i n  s idesl ip .  

Figure 41. - Continued . 
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(d) Lateral characteristics at constant angle of attack. 

Figure 41. - Concluded. 
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(a) Longitudinal characteristics in sideslip. 

Figure 42.- Characteristics of low-aspect-ratio wing at 25' sweep, with large 
radius and Krker-type flap; tail off. 
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(b) Lateral characteristics in sideslip. 

Figure 42. - Cont hued. 
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Figure 44.- Effect of ga,p between fixed-wing leading-edge KrGer f l ap  and movable wing leading-edge 
slat a t  1-80 wing sweep. 
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Figure 45.- Effect of movable wing leading-edge slats on low-aspect-ratio wing at 2T0 sweep. 
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(a) Effect of  K r k e r  f l ap  with basic slat of 0 . 1 5 ~  length.  

Figure 46.- Effect of  slat type and fixed-wing K r k e r  f l a p  def lect ion on mid-tail configuration, B2. 
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(b) Effect of Krker  f l ap  with modified slat  of 0.1875~ length. 
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Figure 46. - Concluded. 
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Figure 47:- Effect of fixed-wing Kr'ker flap deflection on longitudinal characteristics with basic 
( 0  .l5c length) slat and 40' partial-span single-slotted flaps, mid-tail position, configuration B2. 
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(a) 600 Krker flap deflection. 

Figure 48.- Effect of modified slat (0.1873~ length) geometry and Krker flap deflection on mid-tail 
configuration B2 . t-J 
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(b) 75' K r k e r  f l a p  def lect ion.  

Figure 48. - Concluded. 
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Figure 49.- Swmnary of the effects of aspect ratio on longitudinal characteristics with horizontal tail 
off. 
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Figure 30 .- Swnazry of the ef:Xcts m3f' 'Xing leading-edge sweep on longitudinal characteristics, flaps 
both up and down. 
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Figure 51.- Summary of the effects of horizontal-tail location and size on pitching-moment 
characteristics. 
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tail angle of attack for horizontal-tail positions. 
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Figure 55.- Comparison of full- and partial-span flap deflection, configuration A&, low tail, 25' wing 
sweep. 
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Figure 56.- Summary of effects of leading-edge slat geometry on maximum lift coefficient. 
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